Fullerene C60 nanoparticles potentiate the antioxidant defense system of the brain and liver by increasing catalase activity in normal rats

Document Type : Original Article

Authors

1 Department of Physiology and Medical Physics, School of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Background: Previous studies have shown that fullerene C60 nanoparticles and their derivatives possess antioxidant properties, both in vitro and in vivo.
Objectives: The aim of this study was to investigate the effects of orally administered C60 fullerene nanoparticles on the antioxidant capacity of the brain and liver of normal rats, especially on catalase activity.
Methods: Two groups of Wistar rats (n = 6) were studied for 8 weeks: a group that received no treatment and a group that received C60 fullerene nanoparticles orally at a dose of 1 mg/kg/day. Blood glucose and body weight were monitored throughout the study. At the end of the study, catalase activity in the brain and liver was assessed using the Aebi method.
Results: Blood glucose levels remained unchanged in treated rats compared to untreated rats. Results showed similar progressive weight gain in both groups. Fullerene C60 injection, on the other hand, significantly boosted catalase activity in treated rats' brains (0.340.10 U/mg protein) compared to untreated rats (0.120.03 U/mg protein) (p 0.05). Furthermore, fullerene C60 boosted mean catalase activity in treated rats' livers (6.140.76 U/mg protein) compared to untreated rats (2.071.43 U/mg protein) (p<0.05).
Conclusion: The findings suggest that fullerene C60 nanoparticles may enhance the antioxidant capacity of the brain and liver through the enhancement of catalase activity. This may have implications for the prevention of ROS accumulation and oxidative stress in various pathological situations.

Keywords


  1. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73-82. doi:10.1080/01616412.2016.1251711 PMid:27809706
  2. Stefanatos R, Sanz A. The role of mitochondrial ROS in the aging brain. FEBS Lett. 2018;592(5):743-58. doi:10.1002/1873-3468.12902 PMid:29106705
  3. Puttachary S, Sharma S, Stark S, Thippeswamy T. Seizure-induced oxidative stress in temporal lobe epilepsy. BioMed Res Int. 2015; 2015:745613. doi:10.1155/2015/745613 PMid:25650148 PMCid:PMC4306378
  4. Folbergrova J, Jesina P, Nuskova H, Houstek J. Antioxidant enzymes in cerebral cortex of immature rats following experimentally-induced seizures: upregulation of mitochondrial MnSOD (SOD2). Int J Dev Neurosci. 2013;31(2):123-30. doi:10.1016/j.ijdevneu.2012.11.011 PMid:23238024
  5. Akhtar MJ, Ahamed M, Alhadlaq HA, Alshamsan A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj. 2017; 1861 (4):802-13. doi:10.1016/j.bbagen.2017.01.018 PMid:28115205
  6. Cardenas-Rodriguez N, Gonzalez-Trujano ME, Aguirre-Hernandez E, Ruiz-Garcia M, Sampieri A, Coballase-Urrutia E, et al. Anticonvulsant and Antioxidant Effects of Tilia americana var. mexicana and Flavonoids Constituents in the Pentylenetetrazole-Induced Seizures. Oxid Med Cell Longev. 2014. doi:10.1155/2014/329172 PMid:25197430 PMCid:PMC4147264
  7. Folbergrova J. Oxidative Stress in Immature Brain Following Experimentally-Induced Seizures. Physiol Res. 2013;62:S39-S48. doi:10.33549/physiolres.932613 PMid:24329702
  8. Galvan YP, Alperovich I, Zolotukhin P, Prazdnova E, Mazanko M, Belanova A, et al. Fullerenes as Anti-Aging Antioxidants. Curr Aging Sci. 2017;10(1):56-67. doi:10.2174/1874609809666160921120008 PMid:27659261
  9. Baati T, Bourasset F, Gharbi N, Njim L, Abderrabba M, Kerkeni A, et al. The prolongation of the lifespan of rats by repeated oral administration of [60]fullerene. Biomaterials. 2012;33(19):4936-46. doi:10.1016/j.biomaterials.2012.03.036 PMid:22498298
  10. Andrievsky GV, Bruskov VI, Tykhomyrov AA, Gudkov SV. Peculiarities of the antioxidant and radioprotective effects of hydrated C60 fullerene nanostuctures in vitro and in vivo. Free Radic Biol Med. 2009;47(6):786-93. doi:10.1016/j.freeradbiomed.2009.06.016 PMid:19539750
  11. Mousavi SZ, Nafisi S, Maibach HI. Fullerene nanoparticle in dermatological and cosmetic applications. Nanomed Nanotechnol Biol Med. 2017;13(3):1071-87. doi:10.1016/j.nano.2016.10.002 PMid:27771432
  12. Tokuyama H, Yamago S, Nakamura E, Shiraki T, Sugiura Y. Photoinduced biochemical activity of fullerene carboxylic acid. J Am Chem Soc. 1993;115(17):7918-9. doi:10.1021/ja00070a064
  13. Basso AS, Frenkel D, Quintana FJ, Costa-Pinto FA, Petrovic-Stojkovic S, Puckett L, et al. Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. J Clin Investig. 2008;118(4):1532-43. doi:10.1172/JCI33464 PMid:18340379 PMCid:PMC2267014
  14. Darabi S, Mohammadi MT. Fullerenol nanoparticles decrease ischaemia-induced brain injury and oedema through inhibition of oxidative damage and aquaporin-1 expression in ischaemic stroke. Brain Inj. 2017; 31 (8): 1142-50. doi:10.1080/02699052.2017.1300835 PMid:28506130
  15. Sarami Foroshani M, Sobhani ZS, Mohammadi MT, Aryafar M. Fullerenol Nanoparticles Decrease Blood-Brain Barrier Interruption and Brain Edema during Cerebral Ischemia-Reperfusion Injury Probably by Reduction of Interleukin-6 and Matrix Metalloproteinase-9 Transcription. J Stroke Cerebrovasc Dis. 2018;27(11):3053-65. doi:10.1016/j.jstrokecerebrovasdis.2018.06.042 PMid:30093209
  16. Fluri F, Grunstein D, Cam E, Ungethuem U, Hatz F, Schafer J, et al. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats. Exp Neurol. 2015;265:142-51. doi:10.1016/j.expneurol.2015.01.005 PMid:25625851
  17. Vani JR, Mohammadi MT, Foroshani MS, Jafari M. Polyhydroxylated fullerene nanoparticles attenuate brain infarction and oxidative stress in rat model of ischemic stroke. EXCLI J. 2016;15:378-90.
  18. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976; 72:248-54. doi:10.1016/0003-2697(76)90527-3 PMid:942051
  19. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121-6. doi:10.1016/S0076-6879(84)05016-3 PMid:6727660
  20. Heit C, Marshall S, Singh S, Yu X, Charkoftaki G, Zhao H, et al. Catalase deletion promotes prediabetic phenotype in mice. Free Radic Biol Med. 2017;103:48-56. doi:10.1016/j.freeradbiomed.2016.12.011 PMid:27939935 PMCid:PMC5513671
  21. Salim S. Oxidative Stress and the Central Nervous System. J Pharm Exp Ther. 2017;360(1):201-5. doi:10.1124/jpet.116.237503 PMid:27754930 PMCid:PMC5193071
  22. Sheweita SA, El-Hosseiny LS, Nashashibi MA. Protective Effects of Essential Oils as Natural Antioxidants against Hepatotoxicity Induced by Cyclophosphamide in Mice. PloS one. 2016;11(11): e0165667. doi:10.1371/journal.pone.0165667 PMid:27802299 PMCid:PMC5089748
  23. Kaushal S, Ahsan AU, Sharma VL, Chopra M. Epigallocatechin gallate attenuates arsenic induced genotoxicity via regulation of oxidative stress in balb/C mice. Mol Biol Rep. 2019;46(5):5355-69. doi:10.1007/s11033-019-04991-5 PMid:31350662
  24. Yousef MI, Mutar TF, Kamel MAE. Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicol Rep. 2019;6:336-46. doi:10.1016/j.toxrep.2019.04.003 PMid:31049295 PMCid:PMC6482313
  25. Osuna S, Swart M, Sola M. On the mechanism of action of fullerene derivatives in superoxide dismutation. Chemistry (Weinheim an der Bergstrasse, Germany). 2010;16(10):3207-14. doi:10.1002/chem.200902728 PMid:20119990
  26. Beytut E, Aksakal M. Effects of dietary vitamin E and selenium on antioxidative defense mechanisms in the liver of rats treated with high doses of glucocorticoid. Biol Trace Elem Res. 2003;91(3):231-41. doi:10.1385/BTER:91:3:231 PMid:12663947
  27. Groeger G, Quiney C, Cotter TG. Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal. 2009; 11 (11): 2655-71. doi:10.1089/ars.2009.2728 PMid:19558209