Salivary biomarkers of oxidative stress in methamphetamine users: a case-control study

Document Type : Original Article

Authors

1 Associate Professor, Department of Forensic Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

2 General Physician, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran

3 MSc, Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran

4 Professor, Department of Pharmacology-Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran

Abstract

Background: Methamphetamine abuse, a potent and highly addictive stimulant, continues to be a major concern globally due to its potential harmful effects on the human body. Research suggests that methamphetamine use leads to an increase in free radicals and oxidative stress in the body, resulting in various adverse consequences.
Objectives: This study aimed to compare the levels of oxidative stress biomarkers in the saliva of methamphetamine users versus healthy individuals.
Methods: A case-control study was conducted involving 36 methamphetamine users and 27 healthy controls recruited from Farshchian Hospital in Hamadan, Iran. Written, informed consent was obtained from all participants. Saliva samples were collected and analyzed for catalase activity, total thiol molecules, and total antioxidant capacity.
Results: There was no significant difference in the demographic characteristics between the case and control groups. However, the mean total antioxidant capacity in methamphetamine users (0.10±0.01 μmol/ml) was significantly lower than in healthy individuals (0.64±0.12 μmol/ml) (P < 0.001). Catalase activity and thiol groups in saliva showed no significant differences between the two groups.
Conclusion: Our findings suggest that long-term methamphetamine use triggers oxidative stress and elevates oxidants in the bodies of users.

Keywords


  1. Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction. 2009; 104 (7): 1085-99. doi:10.1111/j.1360-0443.2009.02564.x PMid:19426289 
  2. Petit A, Karila L, Chalmin F, Lejoyeux M. Methamphetamine addiction: a review of the literature. J Addict Res Ther. 2012;1:1-6. doi:10.4172/2155-6105.S1-006
  3. Won S, Hong RA, Shohet RV, Seto TB, Parikh NI. Methamphetamine‐associated Clin Cardiol. 2013;36(12):737-42. doi:10.1002/clc.22195 PMid:24037954 PMCid:PMC4319790
  4. Alam-mehrjerdi Z, Mokri A, Dolan K. Methamphetamine use and treatment in Iran: A systematic review from the most populated Persian Gulf country. Asian J Psychiatr. 2015;16:17-25. doi:10.1016/j.ajp.2015.05.036 PMid:26123235
  5. Barr AM, Noroozi A. Methamphetamine-associated psychosis: a new health challenge in Iran. DARU J Pharm Sci. 2013;21(1):1-3. doi:10.1186/2008-2231-21-30 PMid:23577655 PMCid:PMC3637332
  6. Shahbazi Sighaldeh S, Zarghami F, Shahryari A, Mohammadinia A, Ebrahimi M, Jorjani T, Hamrah MS, Charkazi A. A qualitative exploration of the factors associated with initiation to methamphetamine use in Iran. BMC Public Health. 2020; 20 (1): 1-7. doi:10.1186/s12889-020-09908-7 PMid:33228618 PMCid:PMC7684954
  7. Zarghami M. Methamphetamine has changed the profile of patients utilizing psychiatric emergency services in Iran. Iran J Psychiatr Behav Sci. 2011; 5(1):1-5.
  8. Chiu VM, Schenk JO. Mechanism of action of methamphetamine within the catecholamine and serotonin areas of the central nervous system. Curr Drug Abuse Rev. 2012; 5(3):227-42. doi:10.2174/1874473711205030227 PMid:22998621
  9. Vocci FJ, Appel NM. Approaches to the development of medications for the treatment of methamphetamine dependence. Addiction. 2007;102:96-106.
    doi:10.1111/j.1360-0443.2007.01772.x PMid:17493058
  10. Klasser GD, Epstein J. Methamphetamine and its impact on dental care. J Can Den Assoc. 2005;71(10).
  11. Jang EY, Yang CH, Hedges DM, Kim SP, Lee JY, Ekins TG, et al. The role of reactive oxygen species in methamphetamine self‐administration and dopamine release in the nucleus accumbens. Addict Biol. 2017;22(5):1304-15.
    doi:10.1111/adb.12419 PMid:27417190 PMCid:PMC5237425
  12. Hanson GR, Rau KS, Fleckenstein AE. The methamphetamine experience: a NIDA partnership. Neuropharmacology. 2004; 47: 92-100. doi:10.1016/j.neuropharm.2004.06.004 PMid:15464128
  13. Thrash B, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Dhanasekaran M. Neurotoxic effects of methamphetamine. Neurochem Res. 2010;35 (1):171-9. doi:10.1007/s11064-009-0042-5PMid:19697126
  14. Limanaqi F, Gambardella S, Biagioni F, Busceti CL, Fornai F. Epigenetic effects induced by methamphetamine and methamphetamine-dependent oxidative stress. Oxid Med Cell Longev. 2018;2018. doi:10.1155/2018/4982453 PMid:30140365 PMCid:PMC6081569
  15. Lord KC, Shenouda SK, McIlwain E, Charalampidis D, Lucchesi PA, Varner KJ. Oxidative stress contributes to methamphetamine-induced left ventricular dysfunction. Cardiovasc Res. 2010;87(1):111-8. doi:10.1093/cvr/cvq043 PMid:20139112 PMCid:PMC2883898
  16. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem. 1996;239(1):70-6. doi:10.1006/abio.1996.0292 PMid:8660627
  17. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972; 47(2):389-94. doi:10.1016/0003-2697(72)90132-7
  18. Winkler BS, Boulton ME, Gottsch JD, Sternberg P. Oxidative damage and age-related macular degeneration. Mol Vis. 1999; 5: 32.
  19. Cai J, Nelson KC, Wu M, Sternberg P, Jones DP. Oxidative damage and protection of the RPE. Prog Retin Eye Res. 2000;19(2):205-21. doi:10.1016/S1350-9462(99)00009-9
  20. Hu M-L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994;233:380-5.
    doi:10.1016/S0076-6879(94)33044-1
  21. Yamamoto BK, Zhu W. The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther. 1998;287 (1): 107-14.
  22. Walker J, Winhusen T, Storkson JM, Lewis D, Pariza MW, Somoza E, Somoza Total antioxidant capacity is significantly lower in cocaine‐dependent and methamphetamine‐dependent patients relative to normal controls: results from a preliminary study. Hum Psychopharmacol: Clin Exp. 2014; 29(6):537-43. doi:10.1002/hup.2430 PMid:25087849 PMCid:PMC4280317
  23. Wu CW, Ping YH, Yen JC, Chang CY, Wang SF, Yeh CL, et al. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis. Toxicol Appl pharmacol. 2007;220(3):243-51. doi:10.1016/j.taap.2007.01.011 PMid:17350664
  24. Shin EJ, Duong CX, Nguyen XK, Li Z, Bing G, Bach JH, Park DH, Nakayama K, Ali SF, Kanthasamy AG, Cadet JL. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ. Behav Brain Res. 2012; 232(1):98-113. doi:10.1016/j.bbr.2012.04.001 PMid:22512859 PMCid:PMC3964682
  25. Bortolato M, Chen K, Shih JC. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv Drug Deliv Rev. 2008;60(13-14):1527-33. doi:10.1016/j.addr.2008.06.002 PMid:18652859 PMCid:PMC2630537
  26. Yamamoto BK, Bankson MG. Amphetamine neurotoxicity: cause and consequence of oxidative stress. Crit Rev Neurobiol. 2005;17(2). doi:10.1615/CritRevNeurobiol.v17.i2.30 PMid:16808729
  27. Zeng Y, Chen Y, Zhang S, Ren H, Xia J, Liu M, Shan B, Ren Y. Natural Products in Modulating Methamphetamine-Induced Neuronal Apoptosis. Front Pharmacol. 2021;12:805991 doi:10.3389/fphar.2021.805991 PMid:35058785 PMCid:PMC8764133