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Introduction 
Globally, traumatic brain injury (TBI), is the greatest 

single contributor to disability and death of all trauma-
related injuries. The accurate identification and diagnosis 
of TBI is the first step toward providing appropriate 
clinical care. However, accurate clinical identification of 
patients with TBI is complicated by variations in the 
criteria used for diagnosis.1 There are no conclusive 
biologic tools to detect TBI or to track brain recovery, 

diagnosis and management largely consist of patient-
reported symptoms and subjective clinical assessment. 
There is increasing interest in employing saliva samples as 
a source of biomarkers for TBI in clinical practice due to 
the non-invasive accessibility, cost-effective collection, 
and consistent relationship with serum.2 New methods for 
saliva handling, analysis, and biomarker discovery offer 
strong promise for the components of saliva as biomarkers 
for TBI. These methodological advances have identified 
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new candidate biomarkers of TBI, and present the 
feasibility of their use for diagnostics and prognostics of 
TBI.3 If successfully validated, saliva biomarkers of TBI 
will break new ground by improving clinical management 
of TBI and advancing TBI treatments. 
 

Traumatic brain injury 
Damage to the brain after trauma is referred to as 

traumatic brain injury (TBI). TBI may be blunt, non-
penetrating, penetrating, or the result of a blast. The 
resulting neuropathology consists of a primary injury that 
is a direct consequence of the traumatic insult and a 
secondary injury that results from a cascade of molecular 
and cellular events triggered by the primary injury and that 
leads to cell death, axonal injury, and inflammation. The 
annual incidence of TBI has been estimated to be 27 to 69 
million, worldwide. Many survivors live with significant 
disabilities, resulting in a major socioeconomic burden. 
The symptoms of a TBI can be mild, moderate, or severe, 
depending on the extent of damage to the brain. Mild 
trauma may induce brief changes in mental state or 
consciousness. Severe trauma may induce prolonged 
periods of unconsciousness, coma, or even death.4,5 

A computed tomography scan (CT scan) is the gold 
standard for the radiological assessment of a TBI patient. 
A CT scan is easy to perform and an excellent test for 
detecting the presence of blood and fractures, critical 
markers in medical trauma cases. Plain x-rays of the skull 
are recommended by some as a way to evaluate patients 
with only mild neurological dysfunction. Magnetic 
resonance imaging (MRI) is not commonly used for acute 
head injury since it takes longer to perform an MRI than a 
CT. Because it is difficult to transport an acutely injured 
patient from the emergency room to an MRI scanner, the 
use of MRI is impractical. Besides these accurate tools, the 
assessment of biomarkers in biofluids like blood, CSF, 
urine, and saliva have received attention and present some 
valid results.6 

Despite progress in preventive and therapeutic strategies, 
delay in TBI diagnosis remains one of the major causes of 
high morbidity and mortality. The prevalence of TBI is 
rising and leads to an increase in the burden of the socio-
economic and health system, so rapid and accurate 
diagnosis of TBI is necessary.  

Saliva as a source of biomarkers 
Human saliva is a clear and slightly acidic heterogeneous 

biofluid (pH 6.0 to 7.0) composed of water (99%), proteins 
(0.3%), and minerals (0.2%). On average, individual saliva 
secretion can vary from 0.3 to 0.7 ml of saliva per minute, 
producing a range of 1 to 1.5 liters per day. Saliva assists as 
in a variety of functions including tasting, swallowing, and 
digestion of food. Saliva also plays a role in fat deposition 
and serves as a protective barrier against pathogens.7 

Saliva is produced in the salivary glands by acinous cells, 
and released into the oral cavity through a series of ducts. 
The parotid, submandibular, and sublingual, create more 
than 90% of total saliva, with the smaller glands, (lip, 
buccal, lingual, and palate) providing the rest.7,8  

Saliva is collected and analyzed as unstimulated whole 
saliva, unstimulated saliva from specific glandular pairs 
(e.g. parotid or submandibular and sublingual pairs), or 
stimulated saliva from specific pairs of glands. Whole 
saliva that is present in the oral cavity for 24-hour periods 
is characterized as “unstimulated whole saliva” and is 
normally associated with precise clinical conditions when 
compared to stimulated saliva, because the substances 
used to prime the flow may affect saliva composition. 
Unstimulated saliva is collected from an individual’s 
mouth by passively allowing it to flow into a container, or 
saliva is held in the mouth for a specific period and spit 
into a container. This method of collecting is the "gold 
standard" for obtaining many saliva components.9  

Saliva contains several growth factors including EGF, 
FGF, NGF, and TGF-α, that are essential for the 
regeneration of the oral and esophageal mucosa. Some 
antibacterial and antifungal components are also found in 
saliva, such as lysozyme, immunoglobulins, and 
lactoferrin, that prevent the progression of bacterial 
infection and tooth decay. An important proteolytic 
enzyme, α-amylase, is secreted by saliva. Some of these 
components may serve as diagnostic biomarkers, that can 
be accurately analyzed using specific and sensitive 
immunological and biochemical techniques such as RIA, 
ELISA, and chromatography.10 

Recent technological advances in the processing and 
evaluation of salivary components have yielded reliable 
results increasing the characterization of this biological 
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resource as a relatively safer, cheaper, and less invasive 
measure than traditional samples such as blood. Collecting 
blood carries potential risks to individuals, including 
transient discomfort, bruising, infection at the site of the 
vessel, and anemia (if large volumes or vulnerable 
individuals are required). Saliva samples can have several 
advantages over blood for routine TBI testing, including 
their safe and easy collection.11 

According to the National Institutes of Health (NIH), a 
biomarker is an objective indicator of the measurement 
and evaluation of natural biological processes, pathogenic 
processes, or drug responses to therapeutic interventions 
whose concentration, structure, function, or inactivity are 
correlated with the onset, progression, or even regression 
of a particular disorder or as a result of the body's response 
to it. Thus, biomarkers act as valuable and attractive tools 
in the diagnosis, risk assessment, diagnosis, prognosis, and 
monitoring of the disease.12 

The use of salivary biomarkers as new tools for the 
diagnosis of TBI are emerging. Recent studies that have 
examined the use of biomarkers in the saliva, including 
S100B, noncoding RNAs (ncRNAs), extracellular vesicles 
(EVs), miRNAs levels, microtubule-associated protein tau, 
alpha-amylase, cortisol, and oxidative stress are described 
below.  

 

Salivary S100B  
Protein S100B is a member of the S100 protein family and 

comprises the largest subset of Ca2+ EF-hand-binding 
proteins. S100B is mainly synthesized by astrocytes in the 
human brain and secreted from glial cells into the 
extracellular space, where it exhibits cytokine-like 
functions, and modulates long-term synaptic plasticity.13 

The structure of the S100B protein, provided by the X-
Ray technique, is an octagon of four homodimeric units 
arranged as two tetramers in a tight array. In Escherichia 
coli, several other recombinant types of S100B, including 
tetrameric, hexameric, and octameric, have been 
identified. Related studies have shown that the binding of 
the S100B tetrameric structure to RAGE receptors 
(recipients of advanced glycation end products) occurs 
with greater affinity than its dimeric structure. In this 
regard, Tetramer S100B activates cell growth more 
strongly than dimer S100B and increases cell survival.14 

Although the highest amount of S100B has been 
measured in glial cells of the central nervous system its 
persistence and extracellular function lead to the detection 
of this protein in non-CNS cells such as skeletal myofibers, 
myoblasts, adipose tissue, and melanocytes, and other 
tissues. Due to the presence of this biomarker in the 
systemic circulation, it has the ability to be present, 
examined, and measured in biological body fluids such as 
blood, urine, saliva, and amniotic fluid.15 

The S100B levels in body fluids, including blood and 
saliva increase after TBI, heavy exercise, and neurological 
diseases. Therefore, an increase in the level of S100B can 
be considered as a sign of nerve cell damage. A study of 15 
adult patients with suspected TBI (mean age= 47 years, 
range 18–79) and 15 control subjects (mean age= 33 years, 
range 23–53) found salivary S100B levels were 3.9 fold 
higher than blood S100B, regardless of the presence of 
pathology. The salivary level of this protein was as accurate 
in differentiating TBI patients from control subjects as 
serum levels. These preliminary results suggest that 
salivary S100B measurements could be a reliable 
alternative to serum S100B in the diagnosis of TBI. Further 
studies with a large sample size are needed to confirm these 
findings.11 

Early detection of blood-brain barrier damage and 
intracranial hemorrhage within minutes is critical to 
prevent permanent brain disability after TBI.  This 
detection requires measurement of the S100B protein level 
with some 100% validity. To measure serum levels, plasma 
samples are separated by centrifugation within 2 hours of 
collection, the serum is collected and stored at -70 ° C. 
Serum levels of S100B protein are determined using an 
ELISA kit. The same kit can be used to directly detect the 
protein S100B in saliva (without centrifugation, 
separation, or storage), the time saved is an important 
benefit of saliva over plasma. Utilizing salivary samples of 
this protein in cases of TBI has other potential benefits 
including non-invasive sampling and lack of infection 
risk.16 

 

Salivary noncoding RNAs (ncRNAs)  
Non-coding RNA (ncRNA), discovered in 1950, is RNA 

that is not translated into a protein. Instead, ncRNAs act 
as guides directing proteins to specific target sites and play 
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important roles in differentiation, epigenetic regulation, 
transcription regulation, and post-transcription 
regulation. 

ncRNAs are widely distributed in various tissues, 
although some ncRNAs have tissue-specific expression. 

Intracellular localization of ncRNAs can be found in a 
wide range of intracellular components such as the 
cytoplasm, nucleus, or both. The number of ncRNAs in the 
human genome is unknown; however, recent 
transcriptomic and bioinformatics studies suggest that this 
classification includes thousands of sequences. ncRNAs 
are classified by length [Figure-1]. These functionally 
important types of ncRNAs are including tRNA, rRNA, 
microRNAs, siRNAs, piRNAs, snoRNAs, snRNAs, 
exRNAs, and scaRNAs. There are several epigenetic 
changes, including DNA methylation and histone 
modification, and changes in ncRNA levels that may occur 
as a result of TBI.17-19 

One of the most important features of ncRNAs is their 
high stability, especially when exposed to exosomes and 
apoptotic bodies. ncRNA is detectable in body fluids like 
blood and saliva suggesting their potential usage as 
biomarkers for screening, diagnosis, prognosis, and 
response to treatment and evaluation of treatment.20 

In the UK Men's Rugby Union, physicians used ncRNAs 
as salivary biomarkers for the assessment of head injuries 
in athletes.21 A study on the hippocampus of rats showed 
that the expression level of circRNA, which is a type of 
ncRNA, changed significantly after TBI. These results 
suggest that altered circRNA expression patterns in the rat 
hippocampus after TBI may play important roles in post-
TBI physiological and pathological processes. These 
findings may provide not only a new direction for studying 
the molecular mechanisms underlying TBI but also a new 
possibility for the treatment of TBI by modulating 
circRNAs.22 In another study, RNA sequencing was 
performed on 505 saliva samples obtained longitudinally 
from 112 individuals (8–24-years-old) with TBI. ncRNA 
biomarkers show promise for tracking recovery from TBI, 
and for predicting who will have prolonged symptoms. 
Salivary ncRNA levels represent a non-invasive and 
biological measurement that could aid in the accurate, 
early diagnosis of TBI, improving clinical outcomes for 

patients.23 
 

Salivary MicroRNAs  
MicroRNAs (miRNAs) are small, endogenous, non-

coding molecules with a length of 19-42 nucleotides that 
were discovered in 1993. miRNA genes can be very 
different in position in the genome. We have 2 separate 
classes of miRNAs: One group is encoded by protein-
encoding transcription introns and the next group is 
encoded by exons. miRNAs are evolutionary RNAs that 
act as regulators of post-transcriptional expression and 
affect the translation of proteins throughout the body. 
miRNA primarily inhibits or modifies the production of a 
protein produced by binding to complementary target 
sequences in mRNA and interfering with translation 
machines. In addition to suppressing translation, the 
binding of miRNA to mRNA causes the uptake and 
association of mRNA decay factors and leads to mRNA 
instability, degradation, and consequently reduced 
expression levels.24,25 

miRNA is found in every human tissue and biofluid. The 
CNS contains the highest concentration and highest 
diversity of miRNAs. It is estimated that 70% of all 
miRNAs are expressed in the brain, spinal cord, or 
peripheral nerves. These molecules are resistant to RNAse 
degradation, have the ability to cross the BBB, and are 
transported through protected extracellular space in 
exosomes and microvesicles, allowing them to be easily 
measured in biofluids, including serum, cerebrospinal 
fluid, and saliva.26 

Due to their abundance, stability in pH fluctuations, 
resistance to enzymatic degradation, and their key role in 
transcriptional regulation, miRNAs are potentially ideal 
biomarkers for the diagnosis, identification, and 
classification of cancers and other diseases, including 
neurodegenerative diseases, diabetes, and TBI patients. 
These molecules are critical to the function of neurons and 
regulate gene expression in response to brain damage.27 

Saliva can receive exosomal miRNAs directly from the 
cranial nerves in the mouth and throat, therefore responds 
faster than blood miRNAs that must pass through the BBB. 
Salivary miRNAs, on the other hand, reflect the secondary 
neuroplasticity response, which explains their high 
diagnostic accuracy.27 
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Most studies have examined miRNA levels in peripheral 
blood, and a few recent studies have identified saliva as a 
new biofluid. Hicks et al., suggest that these miRNAs could 
predict TBI status in individuals, and salivary miRNA 
levels were associated with the severity of mental 
symptoms.28 In another study, saliva samples were 
collected at multiple time points, both pre-and post-fight 
from 50 amateurs mixed martial arts fighters. A subset of 
salivary miRNAs showed robust utility at predicting TBI 
likelihood and demonstrated quantitative associations 
with head impacts as well as cognitive and balance 
measures.29 

 

Salivary Extracellular vesicles  
Extracellular vesicles (EVs) are bilayer vesicles of 

phospholipid membranes that are secreted by different 
cells. These particles contain biological molecules such as 
mRNA, miRNA, DNA, proteins, and lipids. EVs were 
initially described as a way for homeostasis and biological 
waste disposal. Today, the important and influential role 
of EVs in intracellular communication is very evident not 
only in normal functions but also in disease conditions 
such as cancer, autoimmune diseases, cardiovascular and 
respiratory failure as well as trauma, and tissue damage.30 

 

 
Figure 1. Classification of non-coding RNAs 

 
EVs may affect bone marrow stromal regeneration, target 

cell function, angiogenesis, progression, and metastasis of 
blood malignancies by inducing gene expression in target 
cells. EVs mediate communication between cells by 
affecting target cells and regulate physiological and 
pathological processes.31,32 

The recent classification of EVs is based on biophysical 
characteristics such as size, cellular origin, molecular 
content, and biogenesis. According to these criteria, EVs 
are categories to exosomes, microvesicles, and apoptotic 
bodies, and oncosomes.33  

These EVs contain the genomic and proteomic content 
of the stem cell, can be used as potential biomarkers, and 
are available from biological fluids such as serum, urine, 
and saliva.34 

Accurate and fast diagnosis of TBI is vital for patients. In 
recent years, there has been a growing interest in EVs that 
contain a variety of biomarkers and as an indicator of the 
status of target cells. In fact, EVs can be considered as a 
biopsy platform in the field of early diagnosis and 
treatment. Studies have shown that EVs released by 
damaged cells to biological fluids can be used as potential 
biomarkers to diagnose and evaluate the severity of TBI.  

EVs move between the brain and the oral cavity and can 
be isolated from salivary specimens as a non-invasive TBI 
biomarker that may highlight severe changes or 
neuropathology.35,36  

In a study of 19 subjects with 7 healthy controls, 6 
patients diagnosed with concussion injury from an 
outpatient concussion clinic, and 6 patients with TBI who 
received treatment in the emergency department. Real-
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time PCR analysis of salivary extracellular vesicles in 
participants showed significant changes in the expression 
of 15 inflammation-related genes. These findings indicate 
that inflammation biomarkers can be used for the 
diagnosis of TBI and the evaluation of disease severity.35 
Also, findings from another study conducted on 8 mixed 
martial arts (MMA) fighters and 7 controls, suggest that 
salivary EVs may be used as a biomarker in the acute 
period following TBI to identify the severity of the injury 
severity and to elucidate pathophysiological processes 
involved in TBI.37 Considering the consistent results in 
several studies, as well as the non-invasiveness and 
relatively fast sampling from saliva, it can be mentioned 
that salivary EVs can be used as a diagnostic biomarker to 
detect TBI. 
 

Microtubule-associated protein tau  
Microtubule-associated protein tau (MAPT) is a 

multifunctional intracellular protein that belongs to the 
MT-associated protein family. MAPT is predominantly 
expressed in neurons and is highly enriched in the axonal 
regions. In the human brain, MAPT presents high 
immunoreactivity in non-myelinated axons of cortical 
interneurons located in the grey matter. MAPT has been 
recognized as a biomarker of axonal disruption and the 
release of MAPT into blood and CSF serves as an 
indication of neurotrauma. Elevated levels of MAPT have 
been observed in mild and severe TBI.38-40  

Although the role of MAPT as a biomarker in the case of 
TBI has been investigated by examination of CSF and 
blood obtained during a forensic autopsy, less is known 
concerning MAPT liberation and occurrence in other 
biofluids like saliva. MAPT levels were significantly 
elevated in saliva of those in a study group that was selected 
following neuropathological examination compared to the 
control group.42 The elevated MAPT concentration levels 
in saliva were predictive of the axonal injury even in cases 
where the head injury was not considered to be the direct 
cause of death and thus were undiagnosed and omitted 
during the regular forensic autopsy.43 In another study, the 
elevated salivary MAPT concentration levels using ELISA 
were recorded in cases of TBI in population-based autopsy 
screening, as a biomarker for axonal injury.42  

MAPT release in saliva is provided by two distinct 
mechanisms. Secretion of saliva is mediated by the 
principal salivary glands such as sublingual, 
submandibular, and parotid that are innervated through 
parasympathetic components of the cranial nerves VII 
(facial), IX (glossopharyngeal), and their associated 
submandibular and otic ganglia.44 This close anatomical 
relation of salivary glands with the nervous system 
supports the hypothesis that MAPT is directly released 
from their innervation. Alternatively, MAPT could pass 
from systemic blood circulation into the saliva through the 
blood-saliva barrier which exchanges kinetics of molecules 
that remain largely unaltered in the event of head trauma.45 
Thus, elevated concentration levels of MAPT in saliva 
should be considered as a potential biomarker for TBI in 
postmortem examination. 
 

Salivary alpha-amylase  
Salivary alpha-amylase (sAA) is a digestive enzyme 

produced by salivary acinar cells that break down alpha-1 
to 4 glycosidic bonds in starch and related carbohydrates 
to produce glucose, maltose, maltotriose, and dextrin. 
During the past years, sAA has presented as a valid and 
reliable biomarker for autonomic nervous system (ANS) 
activity in stress research.46 It has also been observed as a 
non-invasive biomarker for sympathetic nervous system 
(SNS) activity.  

In a prospective cohort study, sAA was elevated in 
children 13-15 yrs old after TBI and the levels of sAA 
predicted specific post-traumatic stress symptoms in 
children.47 In another study, Salivary alpha-amylase 
increased in response to trauma reflection in 20 women 
(mean age 23.6 +/- 5.8 years) with a history of trauma 
exposure. Salivary alpha-amylase might serve as a more 
reliable marker of trauma-related reactivity to negative 
affective information, and also as a marker of 
hypervigilance in the absence of threatening 
information.48 As sAA is one of the most abundant 
components of saliva, it may prove to be a reliable 
biomarker in the diagnosis of TBI and stress.  
 

Salivary cortisol  
Cortisol is a low molecular weight lipid steroid hormone 

that is produced and secreted by the cortical part of the 
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adrenal glands. Hormone production is regulated by the 
hypothalamus in the brain and pituitary gland (HPA axis). 
Most cortisol in the blood (up to 95%) is protein-bound 
and only a small percentage is "free" and biologically active. 
Free cortisol is present in saliva, too. Studies have shown 
that salivary cortisol can be kept stable for at least 5-7 days 
at Room temperature.49,50  

In a study, relative to a healthy non-injured comparison 
group, TBI-injured children (ages 8-12 years) had higher 
cortisol levels following vehicular accidents.47 In another 
study, the most common abnormalities included cortisol 
elevation in 34 adult TBI patients, following weaning from 
mechanical ventilation.51 Conversely, another study 
salivary cortisol was not increased in response to the 
trauma reminder in 20 women with a history of trauma 
exposure.48 

Because a salivary stress marker is widely accepted, low 
levels of cortisol in saliva were evaluated as a non-invasive 
measure to modulate stress responses. Apilux et al’s 
development of a lateral current immunoassay device 
using a cortisol-BSA conjugate containing gold-labeled 
gold nanoparticles in a silver amplification system holds 
promise as an effective tool to detect cortisol associated 
with salivary stress.52 

The assessment of salivary cortisol as a diagnostic 
biomarker in TBI is recommended.  TBI may cause anxiety 
and stress in patients, and the positive correlation between 
stress and cortisol levels support its potential as a 
biomarker in TBI.53 
 

Oxidative Stress 
Reactive oxygen species (ROS) and reactive nitrogen 

species (RNS) are produced during natural physiological 
processes. ROS and RNS are highly reactive molecules that 
can damage key cell components. Under physiological 
conditions, the endogenous immune system is able to 
prevent the formation and aids in the removal of these 
harmful molecules protecting tissues against oxidative 
damage. Oxidative stress plays a crucial role in pathology. 
Typically, cells contain several antioxidants to counteract 
the damaging effects of oxidative chemicals, and a healthy 
biological balance between ROS and antioxidants must be 
maintained to prevent oxidative damage to cells and 
tissues.Any oxidative imbalance leads to the accumulation 

of oxidants causing oxidative damage to cells.53,54 
In either case, changes in biomarkers can indicate the 

severity of the abnormality or the extent of the damage. 
The overall change in oxidative or antioxidant markers is 
a reliable indicator, and individual interpretation of each 
oxidative stress marker will be useful for a more accurate 
diagnosis and for understanding the overall trend.53,54 

There is very little literature on the importance of 
antioxidants in TBI. Brain ascorbic acid decreased in TBI 
due to experimental explosion and was associated with 
decreased Glutathione and thiol protein and increased 
oxidative markers. Glutathione S-Transferases (GST) is an 
enzyme that exhibits glutathione peroxidase activity. 
Natural changes in GST expression affect neuronal 
degradation after experimental TBI and confirm the 
importance of lipid peroxidation as an important 
pathophysiological mechanism in TBI.56,57 

Oxidative stress markers, including ROS and their 
mediators, have been evaluated in saliva samples. Salivary 
biomarkers have been shown to play a profound role in the 
diagnosis of many diseases or stressful conditions, 
including TBI.58,59  

New insights into saliva cells as the main source of 
salivary biomarkers have prompted the development of 
new assay methods for standard measurement of 
biomarkers in fluid as well as cells. Digital 
Immunohistochemistry (IHC) and Western Blot (WB) for 
quantitative measurement of SRP 100 biomarker have 
been used for rapid detection.60  
 

Other Biomarkers 
Several other biomarkers including glial fibrillar acidic 

protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 
(UCH-L1), neuron-specific enolase (NSE), neurofilament 
light protein (NFL), beta-amyloid protein, lysozyme, 
immunoglobulins, lactoferrin, and others in saliva that 
may serve as diagnostic biomarkers in TBI patients need 
further studies.   

 
Conclusions 

More than half of all adults will be exposed to a traumatic 
event at some point in their lives, yet we do not yet have 
reliable biomarkers to help predict who experiences 
trauma-related symptoms in response to these events. In 
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this regard, it seems that several reliable, less expensive, 
and easily attainable biomarkers for TBI in saliva provide 
hope for early detection that may save lives.  

This review of the literature has identified saliva 
biomarkers with the highest discriminative abilities as 
determined by operating characteristics in diagnostic 
situations in TBI. Saliva shows a strong promise for 
biomarkers of TBI based on new methods for saliva 
handling, analysis, and biomarker discovery. 

The top performers in each biomarker may provide 
insight into pathogenic mechanisms of TBI that most 
influence the measured endpoint. Nonetheless, many 
challenges remain before these biomarkers can be 
incorporated into clinical practice. In particular, it remains 
unclear whether a large panel of biomarkers in addition to 
clinical assessment will be sufficient to stratify patients 
into categories of TBI before more specific biomarker 
assessments are applied.  

With the refinement and validation of saliva biomarkers, 
we have the potential to use saliva biomarkers as a 
convenient and cost-effective surrogate for currently used 
imaging modalities for the evaluation of TBI in the clinical 
setting. 
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